Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.541
1.
FEMS Yeast Res ; 242024 Jan 09.
Article En | MEDLINE | ID: mdl-38637306

Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterized, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred premid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the wine-making industry.


Fermentation , NAD , Niacin , Oxidation-Reduction , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Niacin/metabolism , NAD/metabolism , Ethanol/metabolism , Coenzymes/metabolism
2.
Chem Biol Interact ; 390: 110876, 2024 Feb 25.
Article En | MEDLINE | ID: mdl-38266864

The medium-chain dehydrogenase/reductase (MDR) superfamily has more than 600,000 members in UniProt as of March 2023. As the family has been growing, the proportion of functionally characterized proteins has been falling behind. The aim of this project was to investigate the binding pockets of nine different MDR protein families based on sequence conservation patterns and three-dimensional structures of members within the respective families. A search and analysis methodology was developed. Using this, a total of 2000 eukaryotic MDR sequences belonging to nine different families were identified. The pairwise sequence identities within each of the families were 80-90 % for the mammalian sequences, like the levels observed for alcohol dehydrogenase, another MDR family. Twenty conserved residues were identified in the coenzyme part of the binding site by matching structural and conservation data of all nine protein families. The conserved residues in the substrate part of the binding pocket varied between the nine MDR families, implying divergent functions for the different families. Studying each family separately made it possible to identify multiple conserved residues that are expected to be important for substrate binding or catalysis of the enzymatic reaction. By combining structural data with the conservation of the amino acid residues in each protein, important residues in the binding pocket were identified for each of the nine MDRs. The obtained results add new positions of interest for the binding and activity of the enzyme family as well as fit well to earlier published data. Three distinct types of binding pockets were identified, containing no, one, or two tyrosine residues.


Alcohol Dehydrogenase , Coenzymes , Animals , Humans , Coenzymes/metabolism , Alcohol Dehydrogenase/metabolism , Mammals/metabolism
3.
Neurosci Lett ; 821: 137623, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38184017

Metal ions participate in various biochemical processes such as electron transport chain, gene transcription, and enzymatic reactions. Furthermore, the aggregation promoting effect of several metal ions on neuronal proteins such as prion, tau, Aß peptide, and α-synuclein, has been reported. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the detergent-resistant membrane microdomain fraction of the neuronal cell membrane. Previously, we showed oligomer formation of NAP-22 in the presence of several phospholipids and fatty acids. In this study, we found the aggregation of NAP-22 by FeCl2, FeCl3, and AlCl3 using native-PAGE. Oligomer or aggregate formation of NAP-22 by ZnCl2 or CuSO4 was shown with SDS-PAGE after cross-linking with glutaraldehyde. Morphological analysis with electron microscopy revealed the formation of large aggregates composed of small annular oligomers in the presence of FeCl3, AlCl3, or CuSO4. In case of FeCl2 or ZnCl2, instead of large aggregates, scattered annular and globular oligomers were observed. Interestingly, metal ion induced aggregation of NAP-22 was inhibited by several coenzymes such as NADP+, NADPH, or thiamine pyrophosphate. Since NAP-22 is highly expressed in the presynaptic region of the synapse, this result suggests the participation of metal ions not only on the protein and membrane dynamics at the presynaptic region, but also on the metabolic regulation though the interaction with coenzymes.


Calmodulin-Binding Proteins , Chlorides , Ferric Compounds , Nerve Tissue Proteins , Nerve Tissue Proteins/metabolism , Calmodulin-Binding Proteins/metabolism , Ions , Coenzymes/metabolism
4.
Chembiochem ; 25(1): e202300409, 2024 01 02.
Article En | MEDLINE | ID: mdl-37948327

Cofactor regeneration systems are of major importance for the applicability of oxidoreductases in biocatalysis. Previously, geranylgeranyl reductases have been investigated for the enzymatic reduction of isolated C=C bonds. However, an enzymatic cofactor-regeneration system for in vitro use is lacking. In this work, we report a ferredoxin from the archaea Archaeoglobus fulgidus that regenerates the flavin of the corresponding geranylgeranyl reductase. The proteins were heterologously produced, and the regeneration was coupled to a ferredoxin reductase from Escherichia coli and a glucose dehydrogenase from Bacillus subtilis, thereby enabling the reduction of isolated C=C bonds by purified enzymes. The system was applied in crude, cell-free extracts and gave conversions comparable to those of a previous method using sodium dithionite for cofactor regeneration. Hence, an enzymatic approach to the reduction of isolated C=C bonds can be coupled with common systems for the regeneration of nicotinamide cofactors, thereby opening new perspectives for the application of geranylgeranyl reductases in biocatalysis.


Coenzymes , Ferredoxins , Coenzymes/metabolism , Ferredoxins/metabolism , Oxidoreductases/metabolism , Escherichia coli/metabolism , Oxidation-Reduction
5.
Cell Rep ; 42(12): 113571, 2023 12 26.
Article En | MEDLINE | ID: mdl-38096053

Natural polyamines such as spermidine and spermine cations have characteristics that make them highly likely to be sensed by riboswitches, such as their general affinity to polyanionic RNA and their broad contributions to cell physiology. Despite previous claims that polyamine riboswitches exist, evidence of their biological functions has remained unconvincing. Here, we report that rare variants of bacterial S-adenosylmethionine-I (SAM-I) riboswitches reject SAM and have adapted to selectively sense spermidine. These spermidine-sensing riboswitch variants are associated with genes whose protein products are directly involved in the production of spermidine and other polyamines. Biochemical and genetic assays demonstrate that representatives of this riboswitch class robustly function as genetic "off" switches, wherein spermidine binding causes premature transcription termination to suppress the expression of polyamine biosynthetic genes. These findings confirm the existence of natural spermidine-sensing riboswitches in bacteria and expand the list of variant riboswitch classes that have adapted to bind different ligands.


Riboswitch , Riboswitch/genetics , S-Adenosylmethionine/metabolism , Spermidine , Coenzymes/metabolism , Oligonucleotides , Bacteria/genetics , Bacteria/metabolism , Nucleic Acid Conformation
6.
Int J Mol Sci ; 24(19)2023 Oct 07.
Article En | MEDLINE | ID: mdl-37834433

Pseudomonas aeruginosa PAO1, as an experimental model for Gram-negative bacteria, harbors two NADP+-dependent isocitrate dehydrogenases (NADP-IDHs) that were evolved from its ancient counterpart NAD-IDHs. For a better understanding of PaIDH1 and PaIDH2, we cloned the genes, overexpressed them in Escherichia coli and purified them to homogeneity. PaIDH1 displayed higher affinity to NADP+ and isocitrate, with lower Km values when compared to PaIDH2. Moreover, PaIDH1 possessed higher temperature tolerance (50 °C) and wider pH range tolerance (7.2-8.5) and could be phosphorylated. After treatment with the bifunctional PaIDH kinase/phosphatase (PaIDH K/P), PaIDH1 lost 80% of its enzymatic activity in one hour due to the phosphorylation of Ser115. Small-molecule compounds like glyoxylic acid and oxaloacetate can effectively inhibit the activity of PaIDHs. The mutant PaIDH1-D346I347A353K393 exhibited enhanced affinity for NAD+ while it lost activity towards NADP+, and the Km value (7770.67 µM) of the mutant PaIDH2-L589 I600 for NADP+ was higher than that observed for NAD+ (5824.33 µM), indicating a shift in coenzyme specificity from NADP+ to NAD+ for both PaIDHs. The experiments demonstrated that the mutation did not alter the oligomeric state of either protein. This study provides a foundation for the elucidation of the evolution and function of two NADP-IDHs in the pathogenic bacterium P. aeruginosa.


Coenzymes , Pseudomonas aeruginosa , Coenzymes/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , NADP/metabolism , NAD/metabolism , Amino Acid Sequence , Isocitrate Dehydrogenase/metabolism , Isocitrates/metabolism , Kinetics
7.
mBio ; 14(5): e0158823, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37823641

IMPORTANCE: In addition to proteins, microbes can use structured RNAs such as riboswitches for the important task of regulating gene expression. Riboswitches control gene expression by changing their structure in response to binding a small molecule and are widespread among bacteria. Here we determine the mechanism of regulation in a riboswitch that responds to corrinoids-a family of coenzymes related to vitamin B12. We report the alternative RNA secondary structures that couple corrinoid sensing with response in a repressing and novel activating corrinoid riboswitch. We then applied this knowledge to flipping the regulatory sign by constructing synthetic riboswitches that activate expression to a higher level than the natural one. In the process, we observed patterns in which sequence, in addition to structure, impacts function in paired RNA regions. The synthetic riboswitches we describe here have potential applications as biosensors.


Riboswitch , Riboswitch/genetics , Vitamin B 12 , Bacteria/genetics , Coenzymes/metabolism , Genetic Engineering
8.
FEBS J ; 290(23): 5514-5535, 2023 12.
Article En | MEDLINE | ID: mdl-37682540

The structure of hexameric glutamate dehydrogenase (GDH) in the presence of the coenzyme nicotinamide adenine dinucleotide phosphate (NADP) was visualized using cryogenic transmission electron microscopy to investigate the ligand-binding pathways to the active site of the enzyme. Each subunit of GDH comprises one hexamer-forming core domain and one nucleotide-binding domain (NAD domain), which spontaneously opens and closes the active-site cleft situated between the two domains. In the presence of NADP, the potential map of GDH hexamer, assuming D3 symmetry, was determined at a resolution of 2.4 Å, but the NAD domain was blurred due to the conformational variety. After focused classification with respect to the NAD domain, the potential maps interpreted as NADP molecules appeared at five different sites in the active-site cleft. The subunits associated with NADP molecules were close to one of the four metastable conformations in the unliganded state. Three of the five binding sites suggested a pathway of NADP molecules to approach the active-site cleft for initiating the enzymatic reaction. The other two binding modes may rarely appear in the presence of glutamate, as demonstrated by the reaction kinetics. Based on the visualized structures and the results from the enzymatic kinetics, we discussed the binding modes of NADP to GDH in the absence and presence of glutamate.


Coenzymes , Glutamate Dehydrogenase , Glutamate Dehydrogenase/chemistry , Coenzymes/metabolism , NADP/metabolism , Cryoelectron Microscopy , NAD/metabolism , Binding Sites , Glutamates , Kinetics
9.
J Biol Chem ; 299(9): 105152, 2023 09.
Article En | MEDLINE | ID: mdl-37567475

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Coenzymes , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferases , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Transferases/chemistry , Transferases/metabolism , Protein Conformation , Coenzymes/metabolism , Vitamin B 6/biosynthesis , Thiamine/biosynthesis , Apoenzymes/chemistry , Apoenzymes/metabolism , Thiamine Pyrophosphate/metabolism , Catalytic Domain , Drug Resistance, Bacterial
10.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2158-2189, 2023 Jun 25.
Article Zh | MEDLINE | ID: mdl-37401588

The synthesis of fine chemicals using multi-enzyme cascade reactions is a recent hot research topic in the field of biocatalysis. The traditional chemical synthesis methods were replaced by constructing in vitro multi-enzyme cascades, then the green synthesis of a variety of bifunctional chemicals can be achieved. This article summarizes the construction strategies of different types of multi-enzyme cascade reactions and their characteristics. In addition, the general methods for recruiting enzymes used in cascade reactions, as well as the regeneration of coenzyme such as NAD(P)H or ATP and their application in multi-enzyme cascade reactions are summarized. Finally, we illustrate the application of multi-enzyme cascades in the synthesis of six bifunctional chemicals, including ω-amino fatty acids, alkyl lactams, α, ω-dicarboxylic acids, α, ω-diamines, α, ω-diols, and ω-amino alcohols.


Amino Acids , Amino Alcohols , Biocatalysis , Coenzymes/metabolism , Diamines
11.
J Biol Chem ; 299(9): 105109, 2023 09.
Article En | MEDLINE | ID: mdl-37517695

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Cobamides , Methylmalonyl-CoA Mutase , Models, Molecular , Molecular Chaperones , Cobamides/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Isomerases/chemistry , Isomerases/metabolism , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/metabolism , Molecular Chaperones/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Cupriavidus/chemistry , Cupriavidus/enzymology , Protein Structure, Quaternary , Catalytic Domain , Coenzymes/metabolism
12.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article En | MEDLINE | ID: mdl-37511187

Isocitrate dehydrogenase (IDH) can be divided into NAD+-dependent and NADP+-dependent types based on the coenzyme specificity. It is worth noting that some IDHs exhibit dual coenzyme specificity characteristics. Herein, a dual coenzyme-dependent IDH from Umbonibacter Marinipuiceus (UmIDH) was expressed, purified, and identified in detail for the first time. SDS-PAGE and Gel filtration chromatography analyses showed that UmIDH is an 84.7 kDa homodimer in solution. The Km values for NAD+ and NADP+ are 1800.0 ± 64.4 µM and 1167.7 ± 113.0 µM in the presence of Mn2+, respectively. Meanwhile, the catalytic efficiency (kcat/Km) of UmIDH is only 2.3-fold greater for NADP+ than NAD+. The maximal activity for UmIDH occurred at pH 8.5 (with Mn2+) or pH 8.7 (with Mg2+) and at 35 °C (with Mn2+ or Mg2+). Heat inactivation assay revealed that UmIDH sustained 50% of maximal activity after incubation at 57 °C for 20 min with either Mn2+ or Mg2+. Moreover, three putative core coenzyme binding residues (R345, L346, and V352) of UmIDH were evaluated by site-directed mutagenesis. This recent work identified a unique dual coenzyme-dependent IDH and achieved the groundbreaking bidirectional modification of this specific IDH's coenzyme dependence for the first time. This provides not only a reference for the study of dual coenzyme-dependent IDH, but also a basis for the investigation of the coenzyme-specific evolutionary mechanisms of IDH.


Coenzymes , NAD , Coenzymes/metabolism , NAD/metabolism , NADP/metabolism , Isocitrate Dehydrogenase/metabolism , Amino Acid Sequence , Kinetics
13.
J Biol Chem ; 299(9): 105086, 2023 09.
Article En | MEDLINE | ID: mdl-37495113

Reductive dehalogenases are corrinoid and iron-sulfur cluster-containing enzymes that catalyze the reductive removal of a halogen atom. The oxygen-sensitive and membrane-associated nature of the respiratory reductive dehalogenases has hindered their detailed kinetic study. In contrast, the evolutionarily related catabolic reductive dehalogenases are oxygen tolerant, with those that are naturally fused to a reductase domain with similarity to phthalate dioxygenase presenting attractive targets for further study. We present efficient heterologous expression of a self-sufficient catabolic reductive dehalogenase from Jhaorihella thermophila in Escherichia coli. Combining the use of maltose-binding protein as a solubility-enhancing tag with the btuCEDFB cobalamin uptake system affords up to 40% cobalamin occupancy and a full complement of iron-sulfur clusters. The enzyme is able to efficiently perform NADPH-dependent dehalogenation of brominated and iodinated phenolic compounds, including the flame retardant tetrabromobisphenol, under both anaerobic and aerobic conditions. NADPH consumption is tightly coupled to product formation. Surprisingly, corresponding chlorinated compounds only act as competitive inhibitors. Electron paramagnetic resonance spectroscopy reveals loss of the Co(II) signal observed in the resting state of the enzyme under steady-state conditions, suggesting accumulation of Co(I)/(III) species prior to the rate-limiting step. In vivo reductive debromination activity is readily observed, and when the enzyme is expressed in E. coli strain W, supports growth on 3-bromo-4-hydroxyphenylacetic as a sole carbon source. This demonstrates the potential for catabolic reductive dehalogenases for future application in bioremediation.


Hydrolases , NADP , Rhodobacteraceae , Escherichia coli/genetics , NADP/metabolism , Oxygen/chemistry , Vitamin B 12/metabolism , Phenols/chemistry , Phenols/metabolism , Electron Spin Resonance Spectroscopy , Hydrolases/chemistry , Hydrolases/genetics , Hydrolases/isolation & purification , Hydrolases/metabolism , Rhodobacteraceae/enzymology , Rhodobacteraceae/genetics , Protein Structure, Tertiary , Models, Molecular , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Coenzymes/metabolism
14.
Plant Physiol Biochem ; 201: 107895, 2023 Aug.
Article En | MEDLINE | ID: mdl-37478728

Glutamate dehydrogenase (GDH) is an enzyme at the crossroad of plant nitrogen and carbon metabolism. GDH catalyzes the conversion of 2-oxoglutarate into glutamate (2OG → Glu), utilizing ammonia as cosubstrate and NADH as coenzyme. The GDH reaction is reversible, meaning that the NAD+-dependent reaction (Glu → 2OG) releases ammonia. In Arabidopsis thaliana, three GDH isoforms exist, AtGDH1, AtGDH2, and AtGDH3. The subject of this work is AtGDH2. Previous reports have suggested that enzymes homologous to AtGDH2 contain a calcium-binding EF-hand motif located in the coenzyme binding domain. Here, we show that while AtGDH2 indeed does bind calcium, the binding occurs elsewhere and the region predicted to be the EF-hand motif has a completely different structure. As the true calcium binding site is > 20 Å away from the active site, it seems to play a structural, rather than catalytic role. We also performed comparative kinetic characterization of AtGDH1 and AtGDH2 using spectroscopic methods and isothermal titration calorimetry, to note that the isoenzymes generally exhibit similar behavior, with calcium having only a minor effect. However, the spatial and temporal changes in the gene expression profiles of the three AtGDH genes point to AtGDH2 as the most prevalent isoform.


Arabidopsis , Glutamate Dehydrogenase , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Arabidopsis/metabolism , Calcium/metabolism , NAD/metabolism , Ammonia/metabolism , Coenzymes/metabolism , Glutamic Acid/metabolism , Binding Sites , Isoenzymes/genetics , Isoenzymes/metabolism
15.
J Am Chem Soc ; 145(24): 13357-13370, 2023 06 21.
Article En | MEDLINE | ID: mdl-37278531

Coenzymes are involved in ≥30% of enzymatic reactions and likely predate enzymes, going back to prebiotic chemistry. However, they are considered poor organocatalysts, and thus their pre-enzymatic function remains unclear. Since metal ions are known to catalyze metabolic reactions in the absence of enzymes, here we explore the influence of metal ions on coenzyme catalysis under conditions relevant to the origin of life (20-75 °C, pH 5-7.5). Specifically, Fe or Al, the two most abundant metals in the Earth's crust, were found to exhibit substantial cooperative effects in transamination reactions catalyzed by pyridoxal (PL), a coenzyme scaffold used by roughly 4% of all enzymes. At 75 °C and 7.5 mol % loading of PL/metal ion, Fe3+-PL was found to be 90-fold faster at catalyzing transamination than PL alone and 174-fold faster than Fe3+ alone, whereas Al3+-PL was 85-fold faster than PL alone and 38-fold faster than Al3+ alone. Under milder conditions, reactions catalyzed by Al3+-PL were >1000 times faster than those catalyzed by PL alone. Pyridoxal phosphate (PLP) exhibited similar behavior to PL. Experimental and theoretical mechanistic studies indicate that the rate-determining step in the PL-metal-catalyzed transamination is different from metal-free and biological PL-based catalysis. Metal coordination to PL lowers the pKa of the PL-metal complex by several units and slows the hydrolysis of imine intermediates by up to 259-fold. Coenzymes, specifically pyridoxal derivatives, could have exhibited useful catalytic function even before enzymes.


Pyridoxal Phosphate , Pyridoxal , Pyridoxal Phosphate/metabolism , Metals , Coenzymes/metabolism , Amination , Catalysis
16.
J Chem Inf Model ; 63(13): 4190-4206, 2023 07 10.
Article En | MEDLINE | ID: mdl-37319436

Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is significant interest in developing drugs that target XOR for treating these conditions and other diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in XOR. However, the precise details of the inhibition mechanism are still unclear, which would be valuable for designing more effective drugs with similar inhibitory functions. In this study, molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the active site, which aligns well with experimental findings. Furthermore, the results provide insights into the residues surrounding the active site and propose an alternative mechanism for developing alternative covalent inhibitors.


Metalloproteins , Oxypurinol , Humans , Xanthine Dehydrogenase/chemistry , Xanthine Dehydrogenase/metabolism , Xanthine/metabolism , Uric Acid/metabolism , Coenzymes/metabolism , Metalloproteins/chemistry
17.
Biochim Biophys Acta Proteins Proteom ; 1871(5): 140931, 2023 09 01.
Article En | MEDLINE | ID: mdl-37353133

Fe and Zn ions are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox enzymes, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.


Coenzymes , Oxidoreductases , Oxidoreductases/metabolism , Coenzymes/metabolism , Oxidation-Reduction , Hydrolases , Zinc/chemistry
18.
Methods Enzymol ; 685: 341-371, 2023.
Article En | MEDLINE | ID: mdl-37245907

Cofactors are essential components of numerous enzymes, therefore their characterization by structural, biophysical, and biochemical approaches is crucial for understanding the resulting catalytic and regulatory mechanisms. In this chapter, we present a case study of a recently discovered cofactor, the nickel-pincer nucleotide (NPN), by demonstrating how we identified and thoroughly characterized this unprecedented nickel-containing coenzyme that is tethered to lactase racemase from Lactiplantibacillus plantarum. In addition, we describe how the NPN cofactor is biosynthesized by a panel of proteins encoded in the lar operon and describe the properties of these novel enzymes. Comprehensive protocols for conducting functional and mechanistic studies of NPN-containing lactate racemase (LarA) and the carboxylase/hydrolase (LarB), sulfur transferase (LarE), and metal insertase (LarC) used for NPN biosynthesis are provided for potential applications towards characterizing enzymes in the same or homologous families.


Coenzymes , Nickel , Humans , Coenzymes/metabolism , Nickel/chemistry , Nucleotides/chemistry , Racemases and Epimerases/genetics
19.
Nature ; 617(7960): 403-408, 2023 05.
Article En | MEDLINE | ID: mdl-37138074

Biosynthesis is an environmentally benign and renewable approach that can be used to produce a broad range of natural and, in some cases, new-to-nature products. However, biology lacks many of the reactions that are available to synthetic chemists, resulting in a narrower scope of accessible products when using biosynthesis rather than synthetic chemistry. A prime example of such chemistry is carbene-transfer reactions1. Although it was recently shown that carbene-transfer reactions can be performed in a cell and used for biosynthesis2,3, carbene donors and unnatural cofactors needed to be added exogenously and transported into cells to effect the desired reactions, precluding cost-effective scale-up of the biosynthesis process with these reactions. Here we report the access to a diazo ester carbene precursor by cellular metabolism and a microbial platform for introducing unnatural carbene-transfer reactions into biosynthesis. The α-diazoester azaserine was produced by expressing a biosynthetic gene cluster in Streptomyces albus. The intracellularly produced azaserine was used as a carbene donor to cyclopropanate another intracellularly produced molecule-styrene. The reaction was catalysed by engineered P450 mutants containing a native cofactor with excellent diastereoselectivity and a moderate yield. Our study establishes a scalable, microbial platform for conducting intracellular abiological carbene-transfer reactions to functionalize a range of natural and new-to-nature products and expands the scope of organic products that can be produced by cellular metabolism.


Azaserine , Azaserine/biosynthesis , Azaserine/chemistry , Biological Products/chemistry , Biological Products/metabolism , Multigene Family/genetics , Styrene/chemistry , Cyclopropanes/chemistry , Coenzymes/chemistry , Coenzymes/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
20.
Chembiochem ; 24(11): e202300055, 2023 06 01.
Article En | MEDLINE | ID: mdl-37051652

Flavin adenine dinucleotide (FAD) is an essential redox cofactor in cellular metabolism. The organic synthesis of FAD typically involves coupling flavin mononucleotide (FMN) with adenosine monophosphate, however, existing synthesis routes present limitations such as multiple steps, low yields, and/or difficult-to-obtain starting materials. In this study, we report the synthesis of FAD nucleobase analogues with guanine/cytosine/uracil in place of adenine and deoxyadenosine in place of adenosine using chemical and enzymatic approaches with readily available starting materials, achieved in 1-3 steps with moderate yields (10-57 %). We find that the enzymatic route using Methanocaldococcus jannaschii FMN adenylyltransferase (MjFMNAT) is versatile and can produce these FAD analogues in high yields. Further, we demonstrate that Escherichia coli glutathione reductase is capable of binding and using these analogues as cofactors. Finally, we show that FAD nucleobase analogues can be synthesized inside a cell from cellular substrates FMN and nucleoside triphosphates by the heterologous expression of MjFMNAT. This lays the foundation for their use in studying the molecular role of FAD in cellular metabolism and as biorthogonal reagents in biotechnology and synthetic biology.


Coenzymes , Flavin-Adenine Dinucleotide , Coenzymes/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavin Mononucleotide/metabolism , Oxidation-Reduction , Escherichia coli/metabolism
...